
Lecture 27: Parallel
programming and functional

languageslanguages
• Why parallel programming is hardy p p g g
• Why functional programming helps
• Two case studies• Two case studies

• Google’s MapReduce
F#’ h kfl• F#’s asynchronous workflows

Why parallel programming is hardy p p g g

• Dependenciesp

• Race conditions

• Deadlock

Granularity of parallelismy p

• Instruction-level parallelismp
• Higher-level parallelism

Approaches to parallel
iprogramming

• Automatic parallelization, i.e. parallelizing p , p g
compilers
• Manual parallelization – low-level

• MPI, OpenMP
• Manual parallelization – high-level

• Languages incorporate abstract models of• Languages incorporate abstract models of
parallelism
• Libraries implement models of parallelism

Why functional languages helpy g g p
• Reduce number of dependencies – makes both
automatic and manual methods easierautomatic and manual methods easier
• E.g. in application of map function, applications
of function to each element are usuallyof function to each element are usually
independent.

Why functional languages helpy g g p
“Due to the absence of side-effects in a purely functional
program, it is relatively easy to partition programs so that p g , y y p p g
sub-programs can be executed in parallel: any computation
which is needed to produce the result of the program may be
run as a separate taskrun as a separate task. …

“Higher-order functions (functions which act on functions)
can also introduce program-specific control structures, which
may be exploited by suitable parallel implementations.”

- Kevin Hammond, www-fp.dcs.st-
and.ac.uk/~kh/papers/pasco94/pasco94.html

Why functional languages helpy g g p
• Consider imperative and functional
implementations of quicksortimplementations of quicksort
Imperative:

qsort(a, lo, hi):
p = choose pivot, move to a[lo]
partition (a, lo+1, hi, pivot)
qsort(a, lo+1, (lo+hi)/2)
qsort(a, (lo+hi)/2+1, hi)qsort(a, (lo hi)/2 1, hi)

Functional:
qsort(lis):

h i t f lip = choose pivot, remove from lis
(l, u) = partition(lis, p)
l’ = qsort(l)
u’ = qsort(u)q ()
l’ @ [p] @ u’

Two case studies
• Google’s MapReduce

P ll li i i l t f• Parallelism in processing large amounts of
data from multiple processors in a data center

Library based model of parallelism• Library-based model of parallelism
• Microsoft’s F# w/ asynchronous

orkflo sworkflows
• Programming model for parallelism in
functional languagefunctional language

Google’s MapReduceg p
• Used to access data from Google’s data centers.

I i d b d d (f ld) ti• Inspired by map and reduce (fold) operations:
• Divide calculation into two parts:

• map – apply function to data independently on a set• map – apply function to data independently on a set
of processors
• reduce – combine results of map operations

• Available to public in “hadoop” implementation
• More info: Dean & Ghemawat, “MapReduce:
Simplified data processing in large clusters”

Google’s MapReduceg p
• User defines (usually in C++) functions map and
reduce:reduce:

map: string*string -> (string * string) list
reduce: string*(string list) -> string listreduce: string (string list) string list

• map is executed on a collection of processors,
producing a list of (key,value) pairs on eachp g (y) p
• The underlying MapReduce library combines
these pairs, groups and sorts by key, then calls
reduce for each key, giving all the values
associated with that key. It returns the combined
list of all values returned from these callslist of all values returned from these calls.

Word-countingg
• map (string docname, string doccontents):

f h d i d t tfor each word w in doccontents:
emit (w, “1”)

reduce (string word list<string> counts):• reduce (string word, list<string> counts):
int result = 0
for each n in counts:for each n in counts:

result := parseInt(n)
emit([“”+result])emit([+result])

• User also supplies mapreduce specification object
telling system how to get started (e g documenttelling system how to get started (e.g. document
names to apply map to)

F#’s asynchronous workflowsy
• F# a .NET implementation of (a variant of)
OCamlOCaml.
• “Asynchronous workflows” is a way to
t di i t ll lturn ordinary programs into parallel
programs.

B d l f t ll d• Based on language feature called
“computation expressions”
• Underlying implementation uses “Task• Underlying implementation uses Task
Parallel Library”

• [show video http //channel9 msdn com/pdc2008/TL11/]• [show video - http://channel9.msdn.com/pdc2008/TL11/]

How asynchronous workflows worky
• “Computation expressions,” are an F#
feature inspired by the Haskell “monad”feature, inspired by the Haskell monad
feature, which allows for a kind of
reflectionreflection.
• Computation expressions allow certain
l t t t b i t t dlanguage constructs to be re-interpreted
using user-supplied semantics. The Async
lib i kfllibrary is a workflow.

Computation expressionsp p
• seq { … yield e … } executes “… yield e …” and
gathers the values of e into a listgathers the values of e into a list.
• Within “…”, can use limited number of
constructs:constructs:

• use var=expr in expr
• let var=expr in expr
• expr; expr
• yield expr, …

“ ” i t k d b t th f• “seq” is not a keyword, but the name of an
object that says how to interpret these language
constructsconstructs.

Computation expressionsp p
• General form of computation expression:

name { expression as above }name { … expression as above … }

• name must be bound to an object of a class
that implements these operations:that implements these operations:

• Bind: α comp * (α →β comp) →β comp
• Delay: (unit → α comp) → α compDelay: (unit → α comp) → α comp
• Let: α comp * (α → α comp) → α comp
• Return: α → α compReturn: α → α comp

where comp is any type constructor you
want (e g list)want (e.g. list).

Computation expressions (cont.)p p ()
The definitions of the above operators are used
the interpret the syntax within the computationthe interpret the syntax within the computation
expression. E.g.

c { let n1 = f in1c { let n1 f in1
let n2 = g in2
let sum = n1+n2
yield sum }

would translate (statically) to
c.Delay(fun () ->

c.Bind(f in1, (fun n1 ->
c.Bind(f in2, (fun n2 ->c.Bind(f in2, (fun n2

c.Let(n1+n2, (fun sum -> c.Return sum)))))))

Asynchronous workflowsy
Asynchronous workflows are an application of
computation expressionscomputation expressions.
The Async module implements these operations
(among others) using the Async type constructor:(among others) using the Async type constructor:

Bind: α Async * (α →β Async) → β Async
Return: α → α AsyncReturn: α → α Async

plus these methods:
Run: α Async *int * bool → αRun: α Async int bool → α
Parallel: (α Async) list → (α list) Async
Spawn: unit Async → unitSpawn: unit Async → unit

